Kinetics of the Reaction of Trimethyl Phosphite with Cyclic α-Diketones

By Y. Ogata * and M. Yamashita, Department of Applied Chemistry, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan

Abstract

The kinetics of the reaction of trimethyl phosphite with aliphatic α-diketones, 9,10 -phenanthrenequinones, and acenaphthenequinone to form a cyclic adduct has been studied in anhydrous dioxan. The rates are expressed as $v=k\left[(\mathrm{MeO})_{3} \mathrm{P}\right][\alpha$-diketone $]$. The rate constant k decreases with an increase in the size of the α-diketone ring in the order 5 (cyclopentane-1,2-dione) >6 (cyclohexane-1,2-dione) >10 (cyclodecane-1,2-dione), while acenaphthenequinone reacts more quickly than 9,10 -phenanthrenequinone which has a condensed ring system. This suggests that the reaction proceeds with releasing strain by changing a carbonyl C atom of cyclopentane1,2 -dione from $s D^{2}$ to $s p^{3}$, and that a β-ketophosphonium intermediate, i.e., an attack of carbonyl carbon atom by the phosphorus atom, is involved. The Hammett equation for the phenanthrenequinones gives a ρ value of +1.5 for the reaction.

Phosphites or phosphines react with cyclic α-diketones, e.g., cyclohexane-1,2-dione (III) ${ }^{1}$ and 9,10 -phenanthrenequinone (Va). ${ }^{2}$ Our previous papers reported that the reaction of phosphites with acyclic α-diketones may involve a rate-determining nucleophilic attack of the phosphorus atom on the carbonyl carbon atom, as shown by the acid catalysis ${ }^{3}$ and the substituent effect of α-diketones ${ }^{4,5}$ and phosphites. ${ }^{6}$

The reactions of cyclic compounds are accelerated by an increase of ring strain in the reactants, if such strain is released during the reaction. ${ }^{7}$ In the Arbuzov reaction, the cyclic five-membered ring shows reduced reactivity. ${ }^{8}$ The reaction of a phosphite of rigid structure, e.g., 2,8,9-trioxa-1-phospha-adamantane, with biacetyl is slow. ${ }^{9}$ These ring-size effects suggest that the formation of a phosphonium intermediate is ratedetermining in these reactions.

The present paper reports our kinetic study on the reaction of trimethyl phosphite with cyclic α-diketones to see the effect of ring strain on the nucleophilic attack

[^0]of phosphorus atom on the carbonyl carbon atom. The effect of substituents on compound (Va) will be discussed in connection with the mechanism.

RESULTS

Trimethyl phosphite (I) reacts with cyclic α-diketones to yield $1: 1$ adducts at room temperature. The reaction in anhydrous dioxan was followed by u.v. spectrophotometry of α-diketones or products. The rate law obtained is expressed by equation (2) to high conversion.

$$
\begin{equation*}
v=k\left[(\mathrm{MeO})_{3} \mathrm{P}\right][\alpha \text {-diketone }] \tag{2}
\end{equation*}
$$

Reaction with Alicyclic Diketones.-The reaction of trimethyl phosphite (I) with alicyclic α-diketones was followed

Table 1
The observed second-order dependence of rate for the reaction of (I) with alicyclic α-diketones in dioxan at $35^{\circ} \mathrm{C}$

	Initial concn./M		
	$[(\mathrm{I})]$	[Diketone]	$\frac{10^{4} k_{\text {obs }}}{1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}}$
α-Diketone	0.0954	0.0441	11
	0.225	0.0441	12
(II)	0.450	0.0139	9
	0.533	0.628	2.5
	0.585	0.196	2.3
(III)	0.763	0.246	2.8
	0.745	0.258	2.41
	0.321	0.208	2.35

by measuring the decreasing absorption of the α-diketones in the visible region. The observed second-order dependence of rate, and rate constant k at various temperatures are listed in Tables 1 and 2, respectively. The value of k for compound (II) was much higher than that for (III) or (IV).

A slow keto-enol equilibrium with (II) and (III) is known. ${ }^{10}$ The approximate enol content (\%) for these two ketones in dioxan were measured by bromination and n.m.r. spectra and is shown in Table 3 together with the second-order rate constants $\left(k^{\prime}\right)$ corrected by taking

[^1]Table 2
The observed second-order rate constants in dioxan at various temperatures

Table 3
Relative second-order rate for the reaction of trimethyl phosphite (I) with alicyclic α-diketones in dioxan at $35.0^{\circ} \mathrm{C}$

No. of C atoms in ring 5 (II)	Initial concn./M		$\frac{10^{4} k_{\text {obs }}}{1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}}$	Approximate enol content of diketone in dioxan (\%)		$10^{4} k^{\prime}$	Relative rate
	[(I)]	[Diketone]		$25^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$\overline{1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}}$	
	0.0954	0.0441	11	94-97 a,c	$84-966^{a, c}$	69-275	23-91
6 (III)	0.533	0.628	$2 \cdot 5$	$2^{\text {a,d }}$	$15-17^{6,6}{ }^{\text {a,d }}$	$3 \cdot 0$	1
10 (IV)	${ }_{0}^{0.745}$	0.258	${ }^{2 \cdot 41}$			$2 \cdot 41$	0.8
$\mathrm{Bu}^{\mathrm{n}} \mathrm{CO} \cdot \mathrm{COBu}^{\text {f }}$	0.803	$0 \cdot 302$	$4 \cdot 07$			$4 \cdot 07$	1.4
a Estimated b (w/w). SRef. 5	ominat	thod. ${ }^{10 a}$ b	d on n.m.r	ctra. ${ }^{\circ}$ Co	0.881 m .	cn. 1.26 m .	ncn. ca.

the content of keto-tautomer into account (see Discussion section).

Table 4

The observed second-order dependence of rate for the reaction of (I) with phenanthrenequinone (Va) and acenaphthenequinone (VI) in dioxan

		Initial concn./M		$10^{3} k$
α-Diketone	$t /{ }^{\circ} \mathrm{C}$	$[(\mathrm{I})]$	[Diketone]	$1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
(Va)	22	0.734	$0 \cdot 000870$	$2 \cdot 40$
		$0 \cdot 248$	$0 \cdot 000870$	$2 \cdot 53$
(VI)	33	$0 \cdot 329$	$0 \cdot 0170$	$19 \cdot 9$
		$0 \cdot 165$	$0 \cdot 0170$	$19 \cdot 6$
		$0 \cdot 329$	$0 \cdot 00850$	$19 \cdot 3$

Reaction with Aromatic Diketones.-The reaction of (I) with 9,10-phenanthrenequinones ($\mathrm{Va}-\mathrm{e}$) and acenaph-
thenequinone (VI) were followed spectrophotometrically by measuring the increasing absorption of $1: 1$ adducts and decreasing absorption of α-diketone. The secondorder dependence of rate and rate constants (k) for (Va) and (VI) are listed in Tables 4 and 5, respectively. The rate of consumption of starting material agrees with the rate of formation of product for (Va), indicating that the consumption of (Va) is rate-determining, but not for (VI) at a lower temperature (ca. $20^{\circ} \mathrm{C}$). But at higher temperature (ca. $30^{\circ} \mathrm{C}$) both rates agreed within experimental error and showed a second-order rate dependence (Table 4).
The substituent effect of (V) on k was measured at $21.5^{\circ} \mathrm{C}$ and is shown in Table 6. The Hammett plot with ordinary σ gives a straight line, which is in contrast to that for monosubstituted benzil. ${ }^{4}$ The ρ value was calculated by the least-squares method to be +1.5 (σ) with a correlation

Table 5
The second-order rate constants for the reaction of trimethyl phosphite (I) with phenanthrenequinone (Va) and acenaphthenequinone (VI) in dioxan

$\overbrace{\left[\begin{array}{c}{[(\mathrm{I})]} \\ 0.210 \\ 0.0230\end{array}\right.}^{\text {Initial concn. } / \mathrm{M}} \underset{\substack{\text { Diketone }] \\ 0.0115 \\ 0.0108}}{\text { In }}$

$10^{3} k / \mathrm{mol}^{-1} \mathrm{~s}^{-1}$			
$20.0{ }^{\circ} \mathrm{C}$	$25.0{ }^{\circ} \mathrm{C}$	$30.0{ }^{\circ} \mathrm{C}$	$\overline{\text { kcal mol }}$
$2 \cdot 10$	2.96	4-12	6.29
7.84	$10 \cdot 8$	14.8	$5 \cdot 94$

$\frac{\Delta S^{\ddagger} b}{\text { cal } \mathrm{mol}^{-1} \mathrm{~K}^{-1}}$
$-30 \cdot 2$
-29.9

$\frac{\ln A}{1 \mathrm{~mol}{ }^{-1} \mathrm{~s}^{-1}}$| $15 \cdot 3$ |
| :---: |
| 15.4 |

${ }_{a}$ The kinetics were followed by measuring the u.v. spectra of the product. ${ }^{\circ}$ The values at $25 \cdot 0^{\circ} \mathrm{C}$.

Table 6
The substituent effect on the rate of the reaction of trimethyl phosphite (I) with phenanthrenequinones (Va-e) in dioxan at $21.5 \pm 0.5^{\circ} \mathrm{C}$

	Initial concn./m		$10^{3} k$		Hammett	Reduction potential
	[(I)]	$[(\mathrm{V})]$	$\overline{1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}}$	\log (Rel. rate)	σ value ${ }^{\text {b }}$	E_{0} / mV
(Va)	$0 \cdot 248$	$0 \cdot 000870$	2.4	$0 \cdot 00$	0.00	458
(Vb)	0.248	0.000818	25	$1 \cdot 01$	$0 \cdot 71$	540
(Vc)	0.248	$0 \cdot 000477$	$3 \cdot 5$	$0 \cdot 17$	0.23	499
(Vd)	$0 \cdot 248$	0.000583	1.5	-0.21	-0.16	443
(Ve)	0.497	$0 \cdot 000819$	$0 \cdot 71$	-0.53	-0.27	419

coefficient (r) of $0.99 .{ }^{11}$ This indicates a nucleophilic attack of phosphorus atom on the carbonyl group of the α-diketone. The reduction potentials of these diketones ${ }^{12}$ correlate with the logarithm of relative rates.

DISCUSSION

The probable mechanism of the reaction of trialkyl phosphite with α-diketones involves a rate-determining attack by phosphorus either on a carbonyl carbon or an oxygen atom of the α-diketone. As reported previously, addition of acids accelerated the reaction of trimethyl phosphite with benzil. ${ }^{3}$ The substituent effect in benzil gave a Hammett correlation with σ better than with σ^{-}, and it afforded a large positive ρ value for symmetrically disubstituted benzils, while that for monosubstituted benzils gave two different positive values (one is for electron-attractive groups and the other is for electron-releasing groups). ${ }^{4}$ The substituent effect in phosphites fits Taft's equation: $\log \left(k / k_{0}\right)=-3 \cdot 28 \sigma^{*}+0 \cdot 40 E_{8}{ }^{6} \quad$ Further, Taft's steric substituent constant E_{s} alone controls the rate of the reaction of trimethyl phosphite with aliphatic α-diketones. ${ }^{5}$ This evidence suggests that the reaction may involve a rate-determining nucleophilic attack of phosphorus atom on the carbonyl carbon atom (path a), but not on the carbonyl oxygen atom (path b) (see Scheme 1). Here, R^{1} and R^{2} may be either an alkyl

Scheme 1
or an aryl group. The hybridisation of the carbonyl carbon atom changes from $s p^{2}$ to $s p^{3}$ in the rate-determining step, so the effect of ring strain of alicyclic α-diketones is expected.

The kinetic study on the reaction of biacetyl with a cyclic phosphite ${ }^{9}$ shows that the phosphorus atom has the $s p^{3}$ hybridisation in the transition state, because a cyclic phosphite with rigid structure retards the rate, but this result cannot distinguish whether the attack of phosphorus atom occurs on a carbonyl carbon or oxygen atom.

The keto-enol equilibria for (II) and (III) are slow, ${ }^{10}$

[^2]so it may be assumed that the concentration of enol tautomer is constant during the kinetic study. There-

fore, the rate is given by equation (5). The observed k^{\prime} values are shown in Table 3. Cyclopentane-1,2-
\[

$$
\begin{equation*}
v=k^{\prime}[(\mathrm{I})][(\mathrm{VII})] \tag{5}
\end{equation*}
$$

\]

dione (II) reacts $20-90$ times as fast as cyclohexane1,2 -dione (III). The observed rate enhancement for (II) is attributable to the ring-strain effect, but not to the acid catalysis of the enol tautomer, because the concentrations of (II) and (III) differ by a factor of 14 (Table 3). The di-imide reduction of cyclopentene is 16 times as fast as that of cyclohexene. ${ }^{13}$ The analogous effect of ring size suggests that both the reaction have an analogous transition state, i.e., an $s p^{3}$ hybridised carbon atom. The change from $s p^{2}$ to $s p^{3}$ hybridisation releases the strain for (II) but not so much for (III), because the angle of $109^{\circ} 28^{\prime}\left(s p^{3}\right)$ is closer to the internal angle of a pentagon than of a hexagon. This higher reactivity of cyclopentanedione is also observed with (Va) and (VI), i.e., the order of the reactivity for (I) is (VI) $>(\mathrm{Va})$. These facts suggest a nucleophilic attack of the phosphorus atom on the carbonyl carbon atom (path a), but not on the carbonyl oxygen atom (paths b and c), since there is no change of hybridisation on the carbon atom in paths b and c (Scheme 2). The one-electron transfer mechanism (path d) is also eliminated. ${ }^{5}$

On the basis of the concept of hard and soft acids and bases, ${ }^{14}(\mathrm{RO})_{3} \mathrm{P}$ and $>\mathrm{CO}$ are a soft base and a hard acid, respectively. ${ }^{15}$ Since the bonding between soft base and hard acid is weak, the rearrangement of phosphorus from the carbon to the oxygen atom should easily occur [equation (8)].

The Hammett equation is applicable with phenanthrenequinones ($\mathrm{Va}-\mathrm{e}$). The obtained positive ρ value coincides with the suggested mechanism above. The order of reactivity of compounds (Va-e) agrees with the ease of reduction, which is estimated by the reduction potential ${ }^{12}$ as a measure of the electrophilicity of the carbonyl group.

The Hammett plot was curved at the origin with benzils, ${ }^{4}$ but not with (Va-e). The configuration of the two carbonyl groups of 9,10 -phenanthrenequinone is reported to be completely cis, but that of benzil is skew on the basis of the dipole moment. ${ }^{16}$ Therefore, the substituent effect transmitted through the carbonyl

[^3]group may be more effective with (V) than benzil because of more effective conjugation, and hence gives rise to the difference between the two plots, i.e., monosubstituted benzil gave a curved Hammett plot, while (V) gives a straight line.

The twist angle (θ) of two carbonyl groups in alicyclic α-diketones increases with increasing size of ring ($0 \leqq \theta \leqq 180^{\circ}$), ${ }^{17}$ i.e., the values of θ are reported to be $0-10,0-60,90-110,100-140$, and $100-180^{\circ}$ for five-, six-, seven-, eight-, and 18 -membered cyclic α-diketones, respectively, and $90-180^{\circ}$ for open-chain aliphatic α-diketones. In view of the kinetic data for

EXPERIMENTAL

Materials.-Cyclopentane-1,2-dione (II), prepared by decarboxylation of adipic acid ${ }^{18}$ followed by bromination and treatment with $\mathrm{FeCl}_{3},{ }^{19}$ had b.p. $60-62^{\circ} / 4 \mathrm{~mm}$ (lit., ${ }^{19}$ b.p. $78-86^{\circ} / 8 \mathrm{~mm}$), m.p. $54-55^{\circ}$ (lit., ${ }^{19}$ m.p. $55-56^{\circ}$), overall yield 4\%. Cyclohexane-1,2-dione (III), prepared by oxidation of cyclohexanone with $\mathrm{SeO}_{2},{ }^{20}$ had b.p. $81-82^{\circ} / 19 \mathrm{~mm}$ (lit., ${ }^{20}$ b.p. $75-79^{\circ} / 16 \mathrm{~mm}$), m.p. 38° (lit., ${ }^{10} \mathrm{~m} . \mathrm{p} .38^{\circ}$), yield 45% (based on SeO_{2}). Cyclo-decane-1,2-dione (IV) was prepared by intramolecular acyloin reductive condensation of diethyl sebacate ${ }^{21}$ followed by oxidation of sebacoin with $\mathrm{CrO}_{3}{ }^{22}$ and had b.p. $81-84^{\circ} / 4 \mathrm{~mm}$ (lit., ${ }^{22}$ b.p. $104-105^{\circ} / 10 \mathrm{~mm}$), overall

Scheme 2
The probable reaction mechanism of cyclic α-diketones with trimethyl phosphite (I). [9,10-Phenanthrenequinone
(Va) and acenaphthenequinone (VI) do not require the equilibrium (6)].
cyclic and acyclic aliphatic α-diketones with $(\mathrm{MeO})_{3} \mathrm{P}$, the relative rate for (III), (IV) and $\mathrm{Bu}^{\mathrm{n}} \mathrm{CO} \cdot \mathrm{COBu}^{\mathrm{n}}$ is almost the same. Therefore, the steric effect ${ }^{5}$ seems to have much more influence than the twist-angle effect. This is also evidence against the synchronous attack of phosphite on carbonyl oxygen atoms.
Provided that no ring strain is involved during the reaction, aromatic α-diketones such as benzil, (Va), and (VI) are more reactive toward (I) than aliphatic α-diketones. This may be explicable by Taft's σ^{*} value, i.e., the polar substituent constant for aromatic groups has a positive value (electron-attracting), while that for alkyl groups has a negative value (electronreleasing), thus the electrophilicity of aromatic α-diketones becomes to be larger than that of aliphatic ones.
The reaction with (VI) is curious; at lower temperature (below $20^{\circ} \mathrm{C}$) the consumption of diketone is much faster than the appearance of $1: 1$ adduct on the basis of spectral changes at least. This is still under study.
${ }^{17}$ (a) S. F. Mason, Quart. Rev., 1961, 15, 287; (b) T. R. Evans and P. A. Leermakers, J. Amer. Chem. Soc., 1967, 89, 4380 ; (c) N. J. Leonard and P. M. Mader, ibid., 1950, 72, 5388.
${ }_{18}$ J. F. Thorpe and G. A. R. Kon, Org. Synth., 1941, Coll. Vol. I, 192.

19 R. M. Acheson, J. Chem. Soc., 1956, 4232.
${ }_{20}$ C. C. Hach, C. V. Banks, and H. Diehl, Org. Synth., 1963, Coll. Vol. IV, 229.
21 N. L. Allinger, Org. Synth., 1963, Coll. Vol. IV, 840
22 A. T. Blomquist, R. E. Burge, jun., and A. C. Suesy, J. Amer. Chem. Soc., 1952, 74, 3636.
yield 9%. 9,10-Phenanthrenequinone (Va), prepared by CrO_{3} oxidation of phenanthrene, ${ }^{23}$ had m.p. 210° (lit., ${ }^{23}$ m.p. $208 \cdot 5-210^{\circ}$), yield 51%. 2-Nitro-9,10-phenanthrenequinone (Vb), prepared by nitration of (Va) with excess of 63% nitric acid, ${ }^{24}$ had m.p. $261-262^{\circ}$ (from chlorobenzene) (lit., ${ }^{24}$ m.p. $264 \cdot 8-265 \cdot 3^{\circ}$), yield 23%. 3-Bromo-9,10-phenanthrenequinone (Vc), prepared by photobromination of (Va) in the presence of $\mathrm{BPO}\left[(\mathrm{Va}): \mathrm{Br}_{2}=1: 1 \cdot 2\right],{ }^{25} \mathrm{had}$ m.p. $254-255^{\circ}$ (from acetic acid) (lit., ${ }^{25}$ m.p. $264-266^{\circ}$), yield 86%. 2-Amino-9,10-phenanthrenequinone (Vd), prepared by reduction of (Vb) with $\mathrm{Sn}-\mathrm{HCl},{ }^{26}$ had m.p. $190-$ 195° (decomp.) [lit., ${ }^{26} \mathrm{~m} . \mathrm{p} .213^{\circ}$ (decomp.)], yield 60%. 3 -Methoxy-9,10-phenanthrenequinone (Ve), prepared by the reaction of sodium methoxide with (Vc) in methanol, had m.p. $200-205^{\circ}$ (lit., ${ }^{27} \mathrm{~m} . \mathrm{p} .209-209 \cdot 5^{\circ}$), yield 30%. Acenaphthenequinone (VI), prepared by $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ oxidation of acenaphthene, ${ }^{28}$ and purified by sublimation and then by recrystallisation from o-dichlorobenzene, had m.p. 261° (lit., ${ }^{28}$ m.p. $259-260^{\circ}$), yield 52%. Trimethyl phosphite (I) was purified by distillation with metallic
${ }^{23}$ R. Wendland and J. LaLonde, Org. Synth., 1963, Coll. Vol. IV, 757.
${ }_{24}{ }^{24}$ S. Kato, M. Maezawa, S. Hirano, and S. Ishigaki, Yuki Gosei Kagaku Kyokai Shi, 1957, 15, 29.

25 M. V. Bhatt, Tetrahedron, 1964, 20, 803.
${ }^{26}$ S. Kato, H. Hashimoto, J. Hashimoto, B. Arikawa, and Y. Maeda, Yuki Gosei Kagaku Kyokai Shi, 1957, 15, 32.
${ }_{27}$ C. S. Wood and F. B. Mallory, J. Org. Chem., 1964, 29, 3373.
${ }^{28}$ C. F. H. Allen and J. A. VanAllan, Org. Synth., 1955, Coll. Vol. III, 1.

Na under N_{2}, and had b.p. $58^{\circ} / 116 \mathrm{~mm}$ (lit., ${ }^{29} 111-112^{\circ}$). Trimethyl phosphite (I)-(Va) ($\mathbf{1 : I}$) adduct was prepared by the reaction of (Va) with excess of (I) at room temperature under N_{2} without solvent or in dioxan for $c a .10 \mathrm{~h}$. The other cyclic α-diketone ($1: 1$) adducts were prepared by the same method.

Solvents were dried and purified before use.
Ultraviolet Spectra.-U.v. spectra of α-diketones and (I)-cyclic α-diketone 1:1 adducts were measured in dioxan or in n-hexane on a Hitachi double-beam 124 type spectrophotometer and/or a Hitachi EPU-2A type photoelectric spectrophotometer. The data used for kinetic studies were as follows: (II), $\lambda_{\text {max }}{ }^{\text {dioxan }} 247 \mathrm{~nm}(\log \varepsilon 3 \cdot 55), \lambda_{\text {inf }}$. dioxan $400 \mathrm{~nm}(\log \varepsilon 1 \cdot 48)$; (III), $\lambda_{\text {max. }}{ }^{\text {dioxan }} 264 \mathrm{~nm}$ ($\log \varepsilon 3.64$), $\lambda_{\text {infl }}$ dioxan $400 \mathrm{~nm}(\log \varepsilon-0.46)$; (IV), $\lambda_{\text {max. }}{ }^{\text {dioxan }} 392 \mathrm{~nm}$ $(\log \varepsilon 1 \cdot 00)$; (Va), $\lambda_{\text {max }}{ }^{n}$-hexane 243 ($\log \varepsilon 4 \cdot 41$), 250 (4•45), and $313 \mathrm{~nm}(3 \cdot 42)$, $\lambda_{\text {max }}{ }^{\text {diozan }} 393 \mathrm{~nm}(\log \varepsilon 2.98)$; (Vb), $\lambda_{\text {max }}{ }^{\text {diozan }} 378 \mathrm{~nm}(\log \varepsilon 3.52)$; (Vc$), \lambda_{\text {max. }}{ }^{\text {dioxan }} 381 \mathrm{~nm}$ ($\log \varepsilon 3.04$) ; (Vd), $\lambda_{\text {max. }}$ dioxan $390 \mathrm{~nm}(\log \varepsilon 3.11)$; (Ve), $\lambda_{\text {max. }}{ }^{\text {dioxan }} 380 \mathrm{~nm}\left(\log \varepsilon 3.09\right.$); (VI), $\lambda_{\text {max }}{ }^{\mathrm{n}}{ }^{\text {-hexane }} 298$ ($\log \varepsilon$ 3.83), $311(\varepsilon 3.86)$, and $336 \mathrm{~nm}(3.77)$, $\lambda_{\text {max }}$ dioxan 473 nm ($\log \varepsilon 1-24$); (I)-(Va) $1: 1$ adduct, $\lambda_{\text {max }}{ }_{\text {max }}$ mexane 306 (log ε 4.04) and $319 \mathrm{~nm}(4.09)$ and (I)-(VI) $1: 1$ adduct, $\lambda_{\text {max }}{ }^{\text {n-hexane }}$ 317 ($\log \varepsilon 3.77$) and $337 \mathrm{~nm}(3.73)$. All adducts had no $\lambda_{\text {max }}$ in the visible region.
Products.-The structure of the products was confirmed by means of u.v. and i.r. spectra.
${ }^{29}$ Wm. W. Marshall, U.S.P. 2,848,474 (Chem. Abs., 195̃9, 53, $1144 c$).

Kinetic Procedure.-The kinetic experiments for the reaction of (I) with (II)-(VI) were carried out in a glassstoppered flask or in a u.v. cell. The rate in dioxan was followed by estimating the remaining α-diketone or increasing product by means of u.v. spectrophotometry at appropriate intervals. A solution which had reached the keto-enol equilibrium was used with (II) and (III) alone. The other kinetic procedure was the same as reported before. ${ }^{3}$

Kinetic Analysis.-Assuming the constancy of enol content during the kinetic experiments, and assuming the completion of reaction at the time when the change of u.v. or visible absorption becomes unappreciable, we obtained the second-order rate constant (k) as shown in Tables 1 and 4. The k value for compounds (II) and (III) were corrected for the keto-content to give rate constants for keto-form alone (k^{\prime}) in Table 3. For the other α-diketones the k values were used for discussion.

Enol Content of Compounds (II) and (III).-The enol content (\%) of (II) and (III) in dioxan was measured by means of Br_{2} titration of enol ${ }^{10 b}$ and/or n.m.r. spectra at 25 and $35{ }^{\circ} \mathrm{C}$ after attainment of the equilibrium (after more than one day). The n.m.r. spectra were as follows ($\delta / \mathrm{p} . \mathrm{p} . \mathrm{m}$. from dioxan): (II), 3.06 (s, enol OH), $2 \cdot 84$ (t, $-\mathrm{CH}=\mathrm{C}-\mathrm{OH})$ and $c a$. $-\mathbf{1 . 2}$ (m, other protons); (III), 3.54
$(\mathrm{s}$, enol OH), $2.43(\mathrm{t},-\mathrm{CH}=\mathrm{C}-\mathrm{OH})$, and -0.75 to $-2.35(\mathrm{~m}$, other protons).
[1/977 Received, 14th June, 1971]

[^0]: ${ }^{1}$ V. A. Kukhtin, T. N. Voskoboeva, and K. M. Kirillova, Zhur. obshchei Khim., 1962, 32, 2333 (Chem. Abs., 1963, 58, 9127 g).
 ${ }_{2}$ (a) F. Ramirez and N. B. Desai, J. Amer. Chem. Soc., 1960, 82, 2652; (b) F. Ramirez, R. B. Mitra, and N. B. Desai, ibid., 1961, 83, 492; (c) F. Ramirez and N. B. Desai, ibid., 1963, 85, 3252.
 ${ }^{3}$ Y. Ogata and M. Yamashita, J. Amer. Chem. Soc., 1970, 92, 4670.
 ${ }^{4}$ Y. Ogata and M. Yamashita, Tetrahedron, 1971, 27, 2725.

[^1]: ${ }^{5}$ Y. Ogata and M. Yamashita, Tetrahedron, 1971, 27, 3395.
 ${ }^{6}$ Y. Ogata and M. Yamashita, J. Org. Chem., 1971, 36, 2584.
 ${ }^{7}$ L. N. Ferguson, J. Chem. Educ., 1970, 47, 46.
 ${ }^{8}$ G. Aksnes and P. Eriksen, Acta Chem. Scand., 1966, 20, 2463.
 ${ }^{9}$ A. D. Litt, Ph.D. Thesis, Rutgers University, 1968.
 ${ }^{10}$ (a) G. Schwarzenbach and Ch. Wittwer, Helv. Chim. Acta, 1947, 30, 663; (b) G. Hesse and G. Krehbiel, Annalen, 1955, 593, 35.

[^2]: ${ }_{11}$ H. H. Jaffé, Chem. Rev., 1953, 53, 191.
 12 L. F. Fieser, J. Amer. Chem. Soc., 1929, 51, 3101.
 13 (a) E. W. Garbish, jun., J. Amer. Chem. Soc., 1965, 87, 505
 (b) E. W. Garbish, jun., S. M. Schildcrout, D. B. Patterson, and C. M. Sprecker, J. Amer. Chem. Soc., 1965, 87, 2932.

[^3]: 14 R. G. Pearson, J. Amer. Chem. Soc., 1963, 85, 3533.
 15 (a) R. G. Pearson and J. Songstand, J. Amer. Chem. Soc. 1967, 89, 1827; (b) B. Saville, Angew. Chem., 1967, 79, 966.
 ${ }^{16}$ C. C. Caldwell and R. J. W. Le Fèvre, Nature, 1939, 143, 803.

